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In recent years, artificial  language learning  experiments have revealed a rich
and complex picture of the abilities of different species and different human age
groups to discover simple patterns in sequences. In one influential study, Aslin
et al. (1998) show that human infants use transitional probabilities (TP’s), and
not just co-occurrence frequencies, between adjacent syllables in a monotonous
stream of speech to segment it into word-like units. 

Peña et al. (2002) presented human adults with a sequence of  syllables
composed  of  concatenated  triplets  of  the  form  AXC,  where  A  and  C
consistently  co-occur,  while  X  may  vary.  Tested  for  recognition  after  100
exposures  to  the  sequence,  their  subjects  show  no  preference  for  either
rule-following unattested sequences (AYC, with Y unobserved in that position;
henceforth  'rule-words')  or  rule-breaking  attested  sequences  (XCA or  CAX,
henceforth  ‘part-words’).  After  300  exposures,  however,  subjects  prefer
part-words (time effect),  while with merely 20 exposures but with subliminal
pauses added between triplets,  subjects prefer rule-words (micropause effect).
These results  are often interpreted as evidence for two different  processes: a
statistical  mechanism  that  tracks  transitional  probabilities,  and  a  rule
mechanism for structure detection. Endress and Bonnatti (2006) emphasize that
the time effect runs contrary to the prediction of single mechanism models, and
thus supports their More-than-One-Mechanism (MoM) hypothesis.

Toro and Trobalón (2005) perform similar experiments with rats, and
report a number of qualitative differences with the human results. In particular,
although  the  rats  learn  to  discriminate  between  stimuli  on  the  basis  of
co-occurrence frequencies, T&T report that they find no TP-effect and no rule
learning (and hence no time effect and no micropause effect). 

In our work, we investigate through modelling whether the presented
empirical results really rule out a single mechanism account for the results on
humans  as  well as rodents.  We define a probabilistic model which  uses the
Simple Good-Turing method to quantify a subject’s willingness to generalize as
the amount of probability mass that is reserved for unobserved sequences. We
further model the probability that a subject will retain a particular subsequence
(  Pret(s)  =  Alength(s)  )  or  recognize  it  and  hence  increase  its  subjective  count
(Prec(s) = (1 – Bactivation(s))D#types ) .



The model involves three free parameters (A, B, and D, all between 0
and 1) that  determine memory constraints and may be fitted to the empirical
data.  The retention  probability is  inversely correlated with  the length  of the
subsequence. The probability for recognition  uses an  activation function that
depends  on  the  accumulated  subjective  frequency  of  the  subsequence.  The
number  of  word  types  adds  difficulty  to  the  task,  resulting  in  a  decreased
recognition probability.

The predictions of the model are summarized below. Figure 1 shows
that  for  a  broad  range  of  parameter  settings  the  willingness  to  generalize
decreases  over  time.  In  figure  2,  we illustrate  for  one  arbitrary  parameter
setting  that  the  difference  between  the  proportion  of  words  and  that  of
part-words in memory becomes smaller with time. 

          Figure 1. Willingness to generalize.  Figure 2: Dark grey: words; light grey: part-words.

The  two graphs  demonstrate  different  effects on  the  preference  for
rule-words over part-words: the willingness to generalize decreases over time
(favouring part-words), while the gap between relative subjective frequencies of
part-words  and  words  decreases.  The  interplay  between  the  two effects  can
yield  a  time  effect  as  Peña  et  al.  report  for  humans,  but  also  a  complete
rejection  of  novel  strings  as  T&T  report,  depending  on  the  choice  of
parameters. Although specific predictions from this model can only be worked
out when we will fit it to the raw data, we can already conclude that the claims
about multiple mechanisms in humans and the lack of a rule-learning ability in
rats are premature.  The behavioural  difference between humans and rats can
thus be accounted for with different values of the parameters of a shared system
for  pattern  recognition.  Our  work  also  demonstrates  the  usefulness  of
developing models of artificial language learning in multiple species, and its
potential for improving our understanding of the biological basis of language.

Aslin,  R.,  Saffran,  J.,  &  Newport,  E.  (1998).  Computation  of  conditional
probability statistics by 8-month-old infants. Psych. science, 9(4), 321-324.

Endress,  A.,  & Bonatti,  L.  (2007).  Rapid  learning  of syllable  classes  from
a perceptually continuous speech stream. Cognition, 105(2), 247-299.

Peña,  M.,  Bonatti,  L.,  Nespor,  M.,  &  Mehler,  J.  (2002).  Signal-driven
computations in speech processing. Science, 298(5593), 604-607. 

Toro, J. M., & Trobalón, J. B. (2005). Statistical computations over a speech
stream in a rodent. Perception & psychophysics, 67(5), 867-875.


